Phase 2 Ground Investigation

New Waste Building, Connon Bridge

E05284

SUEZ Recycling and Recovery UK Ltd

MULTIDISCIPLINARY ENGINEERING CONSULTANTS

Phase 2 Ground Investigation

Report No.

E05284-CLB-00-XX-RP-GT-002

clarkebond

Date. 15 February 2021

Project

New Waste Building, Connon Bridge

Client Name

SUEZ Recycling and Recovery UK Ltd

Issue Date	Status	Comments
29 May 2020	S02P01	For Information
28 February 2021	S02 P02	Client comments
15 February 2021	S02 P03	Revised development plan

Report Prepared by:

Nick Edwards BSc (Hons) MSc FGS Geotechnical Engineer

Approved for Issue by:

Tim Thornburn BSc (Hons) PgDip Principal Geotechnical Engineer

Issuing Office

	The Cocoa House, 129 Cumberland Road, Bristol, BS1 6UY Tel: +44 (0)117 929 2244
х	GF Suite, Bickleigh House, Park Five Business Centre, Exeter, EX2 7HU Tel: +44 (0)1392 369098
	7 Hatchers Mews, Bermondsey Street, London, SE1 3GS Tel: +44(0)20 7939 0959

This report is provided for the benefit of the Client. We do not accept responsibility in the event that the report contents are used in whole or in part by a third party and we exercise no duty of care to any such third party. © Clarkebond (UK) Limited

Man

Phase 2 Ground Investigation

Contents

Execu	itive	Summary iv
1	Intr	oduction1
	1.1	Introduction and Brief 1
	1.2	Proposals1
	1.3	Scope of Works1
	1.4	Limitations 1
2	Site	Setting2
	2.1	Location and Description2
	2.2	Geology
	2.3	Hydrology and Hydrogeology
3	Site	Investigation4
	3.1	General 4
	3.2	Trial Pitting 4
	3.3	Sample Collection and Analysis 4
4	Gro	und Conditions6
	4.1	General 6
	4.2	Strata Encountered
	4.3	Groundwater
	4.4	Contamination Indications
5	Geo	technical Assessment7
	5.1	Introduction7
	5.2	Foundation Assessment
		5.2.1 Foundation Design Principles7
		5.2.2 Foundations7
	5.3	Shrinkable Soils7
	5.4	Floor Slab7
	5.5	Retaining Walls
	5.6	Concrete protection
	5.7	Excavations
	5.8	Pavement Design
6	Con	tamination Assessment
	6.1	Summary

Phase 2 Ground Investigation

8	Sum	nmary		16
7	Was	ste Asse	ssment	14
		6.2.4	Organics – PAHs	13
		6.2.3	Organics – TPH	12
		6.2.2	Metals	12
		6.2.1	General	11
	6.2	Tier 1 G	Generic Quantitative Risk Assessment - Soil Risks to Humans	11

Appendices

- A Proposed Development Plan
- **B** Exploratory Hole Plan
- C Exploratory Hole Logs
- D Geotechnical Test Certificates
- E Chemical Test Certificates

Executive Summary

Client	SUEZ Recycling and Recovery UK Ltd
Site Location	The site is located 8km south west of Liskeard at approximate National Grid Reference 217677 062155 (Postcode: PL14 4NP).
Proposed Development	The proposed development comprises a new waste transfer building north of the existing Refuse Transfer Station (RTS) building, a new pump room and firefighting water tank to the west and redevelopment of the existing clinical waste building.
Site History	The site was agricultural greenfield up until the development of the adjacent landfill in the early 1990s. Associated with the landfill development were ancillary buildings indicated on the 2001 mapping, more recently becoming a recycling centre from 2010 until present day.
Ground Conditions	Superficial Deposits: None Bedrock Geology: Saltash Formation. Thin veneer of surface Made Ground over silty gravel of the weathered slate bedrock. No groundwater was encountered during the investigation.
Hydrogeology & Hydrology	Bedrock Geology: Secondary A aquifer No Source Protection Zones within 500m of the site No surface water within 250m of the site.
Investigation Works	Six trial pits, geotechnical and chemical laboratory testing. No access to the northern part of the site due to slopes and vegetation.
	Traditional spread foundations constructed at a minimum depth of 0.75m within competent natural strata. A safe bearing capacity of 150kPa would be appropriate for the weathered slate. Foundations constructed on intact bedrock can be designed to a safe bearing capacity of 250kPa.
	Soils are non-shrinkable.
Geotechnical Considerations	Design Sulphate Class DS-1 and ACEC class AC-1s. For low rise construction on mass concrete foundations, this corresponds to a concrete type of GEN1.
	A ground bearing floor slab will be suitable. Full radon protection measures are required.
	Design CBR of 5%.
	Conventional mechanical backhoe excavators should prove suitable for excavation within the weathered Saltash Formation.
Contamination Considerations	Comparison of the results against Generic Assessment Criteria (GAC) revealed no elevated concentrations and risks to human health or the environment are unlikely to be present. No asbestos was detected. No remedial actions are required.
Waste Categorisation for Disposal	The Saltash Formation soils are likely to class as Inert waste.

1 Introduction

1.1 Introduction and Brief

Clarkebond (UK) Limited was commissioned by SUEZ Recycling and Recovery UK Ltd to undertake a Phase 2 Ground Investigation for a proposed New Waste Building at an existing Refuse Transfer Station at Connon Bridge, Liskeard. This report builds upon the initial findings of the Phase 1 Assessment which was undertaken in March 2020.

1.2 Proposals

The new facility is to comprise of a new waste transfer station north west of the existing building to provide additional waste material handling/storage capacity. It is also proposed to construct a clinical waste building adjacent to the north east elevation of the building. All of the bays are covered and within the enclosed building and the building fully enclosed with an automated door rapid roller shutter door to be fully compliant with regulations. A new fire water tank is proposed to the west of the existing building. Upgrades to the drainage are also included. A plan showing the proposed development is included as Appendix A.

1.3 Scope of Works

The objectives of the investigation were to determine the sub-surface conditions in respect of:

- Geotechnical recommendations including foundations for proposed structures, floor slabs, soil shrinkability, excavation stability, dewatering and buried concrete classes
- A conceptual site model and contamination generic risk assessment (GQRA)Contamination assessment to consider potential significant pollutant linkages arising from the historic land uses on and off site to support any planning applications and the design process.
- An outline waste classification for surplus soils.

1.4 Limitations

This report is provided for the benefit only of the party to whom it is addressed and we do not accept responsibility to any third party for the whole or any part of the contents and we exercise no duty of care in relation to this report to any third party.

Where intrusive investigations have been completed, information, comments and opinions given in this report are based on the ground conditions encountered during the site work and on the results of laboratory and field tests performed during the investigation. However, subsoils are inherently variable and hidden from view such that no investigation can be exhaustive to the extent that all soil conditions are revealed. Conditions may therefore be present beneath the site that were not apparent in the data reviewed as part of this assessment. In particular, it should be noted that groundwater levels vary due to seasonal and other effects, and may at times differ to those measured during the investigation.

2 Site Setting

2.1 Location and Description

The site is located 8km south west of Liskeard at approximate National Grid Reference 217677 062155 (Postcode: PL14 4NP as shown in Figure 2.1.

Figure 2.1 Site Location

Phase 2 Ground Investigation

The area of the proposed development is approximately triangular in shape and lies to the north of the existing building. The building has been cut into an existing slope and therefore the site slopes at approximately 1 in 10 to the east. Semi-mature species of trees were observed on-site along the western boundary.

The site is bounded to the north and east by the historic landfill, to the south by the access road with agricultural farmland beyond and to the west by B3359 with farmland beyond.

2.2 Geology

The British Geological Survey Digital Geological Map of Great Britain at 1:50,000 scale indicates that the site is directly underlain by bedrock of the Saltash Formation (slate and siltstone).

2.3 Hydrology and Hydrogeology

There are two surface water features within 500m of the site. These features include a river WB catchment on site for the West Looe River and 408m north is the West Looe River. Therefore the potential risk to such receptors is deemed to be moderate.

Guidance from the Environment Agency indicates that the bedrock strata is designated as a Secondary A aquifer. As such the groundwater sensitivity is regarded as high.

There are no active groundwater abstractions that lie within 500m of the site boundary. There is an historic groundwater abstraction located 5m east of the site boundary.

The site is not located within 500m of a Source Protection Zone (SPZ).

3 Site Investigation

3.1 General

An intrusive site investigation using mechanically excavated trial pits was carried out by Clarkebond Ltd to determine sub-surface conditions and allow recovery of samples for laboratory geotechnical and chemical testing. Access to the northern part of the site was not possible due to steep slopes and vegetation. In situ CBR tests and trial pits were intended to be undertaken in this area.

A plan showing the trial pit locations is presented in Appendix B.

3.2 Trial Pitting

Six trial pits (designated TP01 to TP06) were excavated to depths of ranging from 1.90m BGL to 2.30m BGL using a JCB 3CX on 30th April 2020.

The trial pits were logged by a geotechnical engineer and samples were taken from the resulting spoil for geotechnical and chemical analysis. On completion the pits were backfilled with excavated spoil and compacted.

Detailed trial pits logs and photographs are included in Appendix C.

3.3 Sample Collection and Analysis

Samples obtained during the investigation were subjected to geotechnical and chemical testing at appropriate UKAS accredited laboratories.

Samples were submitted for geotechnical laboratory testing to characterise the engineering properties of the soil. The following testing was scheduled on selected samples:

- 3 x Moisture Contents.
- 4 x BRE SD1 Greenfield suite.
- 3 x Particle Size Distributions.
- 3 x 2.5kg CBR mould compaction tests
- 1 x 4.5kg compaction.

Testing was carried out in accordance with the procedures outlined in BS EN ISO 14688-1:2018, 14688-2:2018 and 14689:2018 (i.e. Eurocode 7). Geotechnical laboratory test data is presented in Appendix D.

Soil samples were sent for chemical analysis to i2 Analytical to be analysed for:

- Six full suites comprising arsenic, cadmium, copper, chromium, lead, mercury, nickel, selenium, zinc, Speciated PAH, speciated Total Petroleum Hydrocarbons (TPHCWG), Soil organic matter content (SOM), pH and soluble sulphate.
- Six samples were subject to asbestos screens and ID.

 One soil sample was also submitted for waste acceptance criteria (WAC) testing to assist with determining the acceptability for landfill classes of the soil.

Environmental sample collection was carried out in accordance with Clarkebond Standard Operating Procedures and BS EN ISO 22475-1:2006.

The chemical laboratory test results are presented in Appendix E.

4 Ground Conditions

4.1 General

The results of this investigation were consistent with the anticipated geology. A veneer of Made Ground overlying weathered gravel, cobbles and boulders of weak slate overlying weak thinly bedded slate of the Saltash Formation.

The following table provides a summary of the strata encountered and the depth to the base of each stratum in metres encountered in the exploratory holes.

Stratum	Depth to Base (m bgl)						
Stratum	TP01	TP02	TP03	TP04	TP05	TP06	
Made Ground	0.30	0.15	0.55	0.25	0.20	0.60	
Gravel and cobbles of weak slate	1.50	1.40	1.30	1.30	1.20	1.70	
Gravel, cobbles and boulders of weak slate	1.80*	-	1.90*	-	1.90	2.10*	
Weak, thinly bedded Slate.	-	2.30*	-	2.30*	2.30*	-	
Groundwater	Dry	Dry	Dry	Dry	Dry	Dry	

Table 4.1 Typical Strata

*refusal at base of hole

4.2 Strata Encountered

Made Ground

The Made Ground typically comprised pale orange / pink / grey slightly clayey, angular, fine to coarse slate gravel.

Saltash Formation

The Made Ground was underlain by the solid geology of the Saltash Formation. This was weathered to slightly silty angular gravel, cobbles and boulders of slate. This was underlain by weak, thinly bedded slate.

4.3 Groundwater

No groundwater was encountered during the investigation.

4.4 Contamination Indications

There were no visual or olfactory indications of contamination or asbestos noted during the site works.

Phase 2 Ground Investigation

5 Geotechnical Assessment

5.1 Introduction

The proposed development comprises a new waste transfer building north of the existing Refuse Transfer Station (RTS) building, a new pump room and firefighting water tank to the west and redevelopment of the existing clinical waste building. An access road will be constructed in the west of the site. Upgrades to the drainage are also included.

A proposed development plan is included in Appendix A.

5.2 Foundation Assessment

5.2.1 Foundation Design Principles

The two primary factors controlling the performance of foundations are bearing capacity and settlement. Usually the settlement tolerances of the structure are considerably less than the settlement that would be expected as the ultimate bearing capacity of the soils is approached. Therefore it is usually tolerable settlement that dictates the bearing pressure for foundation design. In general, the ultimate bearing capacity is usually divided by a safety factor of 3 for an allowable bearing capacity in order to maintain total settlement within tolerable limits for most structures, which is generally accepted to be 25mm. However, it should be noted that total settlements are usually less than this value as the average actual imposed load will be less than the design load.

All foundations should be inspected by a suitably qualified and competent person to ensure that foundations are placed in competent material capable of supporting the intended loads and below any desiccated clay soils.

5.2.2 Foundations

Traditional foundations will be suitable, and should be taken down through any soft or loose materials and constructed in competent natural strata at a minimum foundation depth of 0.75m below existing ground level. A safe bearing capacity of 150kPa would be appropriate for the weathered slate. Foundations constructed on intact bedrock can be designed to a safe bearing capacity of 250kPa.

Total settlements for foundations designed to the above pressures are likely to be in the order of 15 to 25mm, most of which would occur during construction. There would be a reduction in settlements with foundation depth, as the soil strength increases. Imposing a lower bearing pressure than the safe bearing capacity would also reduce settlement.

5.3 Shrinkable Soils

The soils encountered on site are non-shrinkable.

5.4 Floor Slab

A ground bearing floor slab would be appropriate.

The site lies in a high radon area and full radon protection measures are required for new buildings or extensions.

Guidance from the HSE states that radon surveys should be conducted in any workplace where its location and characteristics suggest that elevated levels may be found and significant exposures to employees and/or other persons are possible. Inexpensive surveys can be carried out by leaving small plastic passive detectors in rooms or occupied locations of interest. The PHE website contains up-to-date details of validated laboratories capable of supplying such detectors for undertaking radon measurements. Delivery and return of the dosemeters is usually by post.

The Building Regulations 2004 (England, includes 2010 and 2013 amendments), the Building Regulations 2010 (Wales, includes 2017 amendments), the Building (Scotland) Regulations 2004 and Building Regulations (Northern Ireland) 2000, supported by BRE report BR211 describe where new buildings and extensions (workplaces and dwellings) might need to incorporate protective measures installed during construction.

Since even new buildings with protective measures may have high radon levels, employers must still test as described above.

There is also a former landfill to the east of the site, which has an active gas management system.

The existing RTS building has full radon protection measures installed. These comprise:

- 1200 gauge polyethene membrane, tape sealed. Minimum 150mm overlaps.
- Radon control sumps.
- 110mm dia plastic pipe with sealed joints to terminate above ground level.

These details should be incorporated within the proposed building.

5.5 Retaining Walls

It is understood that a reinforced concrete cantilever retaining will be constructed to accommodate the development.

Design parameters are presented in Table 5.1.

	Characteri	Bulk	
Soil Type	Friction Angle °	Angle Cohesion	
Weathered slate	32	0	19
Intact slate	34	0	20

Table 5.1 Design Parameters for Retaining Wall Design (unfactored)

5.6 Concrete protection

Buried concrete classification is based on guidelines provided in BRE Special Digest 1 (BRE, 2005).

Chemical Analysis was undertaken on four soil samples for pH, water soluble sulphate, total sulphate and total sulphur. An assessment for total potential sulphate indicates that the soils are not considered to be pyritic and the design class should be based on soluble sulphates.

The pH values were 6.8 to 7.1 with water soluble sulphate concentrations of 7mg/l to 12mg/l Therefore it is recommended that a Design Class of DS1 and AC1s should be assumed for buried concrete in accordance with BRE Special Digest 1 assuming natural ground and static groundwater conditions.

For low rise construction on mass concrete foundations, this corresponds to a concrete type of GEN1. It is recommended that the concrete supplier confirm the necessary concrete type based on its intended use and the chemical test results in Appendix E.

5.7 Excavations

Conventional mechanical backhoe excavators should prove suitable for excavation within the weathered Saltash Formation.

The weathered soils were recovered as gravel and cobble sized fragments and may be subject to spalling and collapse within excavations and concrete should be poured as soon as possible and temporary support may be required. Entry into shallow excavations by personnel should be minimised, and excavation stability should be assessed by suitably qualified and experienced staff and shoring used when required. Entry into deeper excavations should not be permitted unless full support is provided.

No groundwater was encountered during the investigation undertaken in April 2020.

5.8 Pavement Design

Laboratory CBR tested was undertaken on three recompacted samples. This gave CBR values of 18% to 47%. The results indicate that where the weathered slate is excavated and re-compacted, it would provide a suitable formation for road construction.

For the in situ weathered slate, equilibrium CBR values for various materials are given in Interim Advice Note 73/06 "Design Guidance for Road Pavement Foundations (Draft HD25)" produced by the Highways Agency and these are summarised in Table 5.2 assuming a high water table and thin pavement construction.

Soil Type	PI (%)	Equilibrium CBR (%)
Heavy clay	50-70	2
Silty clay	30	3
Sandy clay	10-20	3-4
Silt	-	1
Sands and gravels		> 5%

Table 5.2	Typical CBR Values
-----------	---------------------------

Phase 2 Ground Investigation

The near surface soils are predominantly gravel of the weathered slate. Based on Table 5.2 it is recommended that a design CBR of 5% is adopted for these soils.

All Topsoil / Made Ground should be removed and the formation level should be proof rolled to identify any loose or soft spots, which should be removed and replaced with compacted granular fill. The conditions prevailing at the time of construction will affect the CBR of the sub-grade soil and its strength. Research has shown the importance of the equilibrium moisture content of the sub-grade. The relationship between soil suction and the moisture content shows that a soil that becomes wet during construction will retain water and will therefore be weaker under the pavement in the equilibrium condition than a foundation that has remained dry, particularly for soils of low to medium plasticity. Consequently the formation level will also need to be protected during inclement weather from deterioration; all slopes should be trimmed to falls to shed rain water and the surface sealed to limit infiltration.

Phase 2 Ground Investigation

6 Contamination Assessment

6.1 Summary

Comparison of the results against Generic Assessment Criteria (GAC) revealed no elevated concentrations and risks to human health or the environment are unlikely to be present.

No asbestos was detected.

No remedial actions are required.

No access to the northern part of the site was possible, however the ground conditions were consistent over the remainder of the site and excluding any materials that may have been imported to this area, significantly differing ground conditions are not expected in the north of the site.

A standard H&S personal hygiene plan should suffice (wearing of gloves, washing of hands before eating etc). Excessive dust generation should be avoided.

Details of the test results and comparison with guideline values is presented in the following sections.

6.2 Tier 1 Generic Quantitative Risk Assessment - Soil Risks to Humans

6.2.1 General

A generic quantitative risk assessment (GQRA) has been undertaken using the geochemical results for the soil samples retained from the site. The approach to human health risk assessment adopted in this report is consistent with the Environment Agency's Model Procedures (CLR11) and other relevant guidance (including SR3, BS10175:2001 and NPPF).

The laboratory soil data has been compared to relevant and applicable critical concentrations as outlined in the guidance. These criteria can be either Generic Assessment Criteria (GAC) or Site Specific Assessment Criteria (SSAC). For the purpose of this generic quantitative risk assessment, GAC will be used. The GACs been derived from the following:

- DEFRA C4SL Health Criteria Values (March 2014),
- CI:AIRE/EIC/AGS Soil Generic Assessment Criteria for Human Health Risk assessment, January 2010 and
- The LQM/CIEH S4ULs for Human Health Risk Assessment. Ref: S4UL3269, released January 2015, Land Quality Press, Nottingham

The site is non-residential therefore a '*commercial'* end use has been assumed for the assessment.

To ascertain a preliminary assessment of the contaminative nature of the near surface materials across the site, seven soil samples were retained during the site investigation works and submitted for laboratory analysis.

The chemical analysis was undertaken at i2 Analytical laboratories. The results are included in Appendix E.

6.2.2 Metals

Table 6.1 summarises the results of heavy metal concentrations within the soil samples compared to GAC values.

Determinant	CAC.	Concentra	tion Range	No. samples	No. samples exceed GAC	
Determinant	GAC	Min	Max	tested		
Arsenic	640	20	28	6	0	
Boron (w/s)	240000	<0.2	<0.2	6	0	
Cadmium	190	<0.2	<0.2	6	0	
Chromium (total)	8600	36	51	6	0	
Copper	68000	0	<4	0	0	
Lead	2330	19	49	6	0	
Mercury	58	21	31	6	0	
Nickel	980	<0.3	<0.3	6	0	
Selenium	12000	47	65	6	0	
Zinc	730000	<1	<1	6	0	

Table 6.1Values for Metals in Soils

Results in mg/kg . GACs are LQM GAC unless stated otherwise.

6.2.3 Organics – TPH

Table 6.2 summarises the results of Speciated Hydrocarbons concentrations within the soil samples compared to GAC values.

Determinant	GAC	Concentra	tion Range	No. samples	No. samples	
Determinant	GAC	Min	Max	tested	exceed GAC	
EC>5-6 Aliphatic	1000000	<0.1	<0.1	6	0	
EC>6-8 Aliphatic	1000000	<0.1	<0.1	6	0	
EC>8-10 Aliphatic	41000	<0.1	<0.1	6	0	
EC>10-12 Aliphatic	41000	<1	<1	6	0	
EC>12-16 Aliphatic	41000	<2	<2	6	0	
EC>16-35 Aliphatic	81000	<10	<10	6	0	
EC>35-44 Aliphatic	81000	0	<8.4	0	0	
EC>5-7 Aromatic	180000	<0.1	<0.1	6	0	
EC>7-8 Aromatic	180000	<0.1	<0.1	6	0	
EC>8-10 Aromatic	16000	<0.1	<0.1	6	0	
EC>10-12 Aromatic	16000	<1	<1	6	0	
EC>12-16 Aromatic	16000	<2	<2	6	0	
EC>16-21 Aromatic	12000	<10	<10	6	0	
EC>21-35 Aromatic	12000	<10	<10	6	0	
EC>35-44 Aromatic	12000	<8.4	<8.4	6	0	

 Table 6.2
 Values for Speciated Hydrocarbons in Soils

Results in mg/kg. GACs are LQM S4UL for SOM of 1% unless stated otherwise.

6.2.4 Organics – PAHs

Table 6.3 summarises the results of speciated Poly Aromatic Hydrocarbons (PAH) concentrations within the soil samples compared to GAC values.

Determinent	GAC	Concentra	tion Range	No. samples	No. samples	
Determinant	GAC	Min	Max	tested	exceed GAC	
Acenaphthene	39000	<0.1	<0.1	6	0	
Acenaphthylene	39000	<0.1	<0.1	6	0	
Anthracene	200000	<0.1	<0.1	6	0	
Benz(a)anthracene	89	<0.1	<0.1	6	0	
Benzo(a)pyrene	13	<0.1	<0.1	6	0	
Benzo(b)fluoranthene	92	<0.1	<0.1	6	0	
Benzo(ghi)perylene	590	<0.05	<0.05	6	0	
Benzo(k)fluoranthene	130	<0.1	<0.1	6	0	
Chrysene	130	<0.05	<0.05	6	0	
Dibenz(a,h)anthracene	12	<0.1	<0.1	6	0	
Fluoranthene	8100	<0.1	<0.1	6	0	
Fluorene	26000	<0.1	<0.1	6	0	
Indeno(1,2,3-cd)pyrene	56	<0.1	<0.1	6	0	
Naphthalene	13000	<0.05	<0.05	6	0	
Phenanthrene	8100	<0.1	<0.1	6	0	
Pyrene	20000	<0.1	<0.1	6	0	

Table 6.3 Values for Speciated PAH in Soils

Results in mg/kg. GACs are LQM S4UL for SOM of 1% unless stated otherwise.

7 Waste Assessment

Assessment (including WAC) testing has been undertaken on a sample of the weathered slate. The results are included in Appendix E.

The sample met the **inert** criteria.

All producers of waste have a **duty of care** to ensure that any waste they produce is handled safely and within the law. They must **check** that anyone they pass waste on to is **authorised** to take it. This includes the authorised site earmarked to handle the waste and any haulier (licensed waste carrier) used to transport the waste between the sites.

Records of all waste transferred or received must keep for at least two years.

In order to prevent excessive costs and reduce the environmental impact of the development, it is recommended that removal of wastes from the site, including waste soils, is kept to a minimum by:

- firstly trying to balance cut/fill earthworks operations
- and then by employing U1 Waste Exemptions (use of waste in construction)
- and/or Definition of Waste: Industry Code of Practice (DoWCoP) assessment,
- exporting to a soil treatment hub,
- with the last resort being disposal to a licensed waste disposal site (subject to Landfill Tax).

Clarkebond's DoWCoP Qualified Persons can assist with these assessments.

Transfer for Reuse on Another Site

Surplus soils become waste as soon as they leave site, unless they are being transferred to another "development" or "construction" site for reuse. Such transfer means that such soils do not class as waste, provided that a waste assessment is completed (e.g. by a DoWCoP Qualified Person) to prove compliance within the 4nr (DoWCoP type) factors.

Soil types can be transferred as follows:

- Utilising DoWCoP: Currently only <u>natural soils</u> can be transferred via a DoWCoP.
- Utilising U1 Waste Exemption: Limited quantities of both natural soils and <u>Made Ground</u> can be transferred via a U1, <u>provided that</u> they pose no risks to humans, or the environment.

Certain other materials may also be reused on other "Construction" sites by employing a U1 Waste Exemption.

Disposal to Licensed Waste Sites

To evaluate the various on-site soils for potential off-site disposal, soils are classified in accordance with the Hazardous Waste Directive (HWD) that enables the provision of a European Waste Catalogue (EWC) Code for use during offsite disposal and a Hazardous or Non-Hazardous

Phase 2 Ground Investigation

Classification. Non-Hazardous material is suitable for disposal in a Non-Hazardous landfill; however, disposal to an Inert Landfill requires further Waste Acceptance Criteria (WAC) testing in accordance with BS EN 12457–3. Material classed as Hazardous also requires WAC testing to assign a suitable hazardous classification.

The Landfill Regulations require that all Hazardous and Non-Hazardous solid waste must be treated prior to offsite disposal to landfill. You can define 'treatment' by using the following 'three-point test'. All three criteria must be satisfied for all of the waste to qualify as being treated:

- 1. It must be a physical, thermal, chemical or biological process including sorting.
- 2. It must change the characteristics of the waste.
- 3. It must do so in order to:
 - a. Reduce its volume; or
 - b. Reduce its hazardous nature; or
 - c. Facilitate its handling; or
 - d. Enhance recovery.

8 Summary

Traditional spread foundations constructed at a minimum depth of 0.75m within competent natural strata. A safe bearing capacity of 150kPa would be appropriate for the weathered slate. Foundations constructed on intact bedrock can be designed to a safe bearing capacity of 250kPa.

Soils are non-shrinkable.

Design Sulphate Class DS-1 and ACEC class AC-1s. For low rise construction on mass concrete foundations, this corresponds to a concrete type of GEN1.

A ground bearing floor slab will be suitable. Full radon protection measures are required.

Design CBR of 5%.

Conventional mechanical backhoe excavators should prove suitable for excavation within the weathered Saltash Formation.

Comparison of the results against Generic Assessment Criteria (GAC) revealed no elevated concentrations and risks to human health or the environment are unlikely to be present.

No remedial actions are required.

The Saltash Formation soils are likely to class as Inert waste.

Appendices

- A Proposed Development Plan
- B Exploratory Hole Plan
- C Exploratory Hole Logs
- D Geotechnical Test Certificates
- E Chemical Test Certificates

A Proposed Development Plan

B Exploratory Hole Plan

C Exploratory Hole Logs

							Trial P	Trial Pit No.:			
clarke	bor	nd			-	Trial Pit Log	•	TP01			
Project Name:	С	onnon Bridge				Co-Ordinates: 217664 E 62133 N	Start:	30/04/2	2020		
Project Numb	er: E	05284				Ground Level (m OD): 162.50	End:	30/04/2020			
Sam	ples ar	nd In Situ Testing	Depth		Legend	Stratum Description		Water	Wall		
Depth (m)	Туре	Results	s (m)	(m OD)	Legenu			Strike	vven		
			Deptil	Level (m OD) 162.20 161.00 160.70	Legend	Stratum Description MADE GROUND Pale orange / pink / grey slightly clayey angular fine to coarse slate gravel. Pale pink orange grey slightly silty angular GRAVEL AN COBBLES of weak slate. WEATHERED SALTASH FORMATION Pink grey slightly silty angular tabular GRAVEL, COBBL BOULDERS of weak slate. WEATHERED SALTASH FORMATION End of Pit at 1.80m	D	Vater Strike - 0.5 - 0.5 	Well		
								-			
								L			
								_ 4.5 			
								_ _ 5.0			
						General Remarks:			Bv.		
						General Remarks: No groundwater encountered. Some overbreak below 2	L.50m.	Logged By: TT			
								Approve TT			
								Scale			
Stability:								1:25			
Shoring:	Non	e				Method/Plant Used: JCB 3CX	Sheet 1 of 1				

clarkebond					-	Trial Pit Log	Trial Pit No.: TPO2			
Project Name:		connon Bridge				Co-Ordinates: 217648 E 62154 N	Start:			
Project Numbe		05284				Ground Level (m OD): 161.90	End:			
		nd In Situ Testing	Depth	Level			<u> </u>	Water		
Depth (m)	Туре	Results	()	(m OD)	Legend	Stratum Description		Strike	Well	
0.60 - 1.00	В		0.15	161.75		MADE GROUND Grey very clayey angular fine to coarse slate gravel. Pale pink orange grey slightly silty angular GRAVEL AND COBBLES of weak slate. WEATHERED SALTASH FORMATION		 0.5		
1.00	DS							- - - 1.0		
1.00			1.40	160.50				-		
	1.40 160.50 Additional and a second s				-316- -316- -316- -316- -316- -316-	Weak very thinly to thinly bedded closely fractured pink grey SLATE. Recovered as silty angular tabular gravel, cobbles and boulders. SALTASH FORMATION	(— 1.5 — —		
					ssilie- ssilie- ssilie- ssilie- ssilie- ssilie-			 2.0 		
			2.30	159.60		End of Pit at 2.30m		_		
								- 2.5 		
						General Remarks: No groundwater encountered. Pit stable.			ed By:	
Stability:								Scale: 1:25		
Shoring:	Non	e				Method/Plant Used: JCB 3CX		Sheet 1 of 1		

clarke	bor	nd		Trial Pit No.: TPO3						
Project Name:	C	onnon Bridge				Co-Ordinates:	217663 E 62120 N	Start:	30/04/2	2020
Project Numbe	er: E	05284				Ground Level (m OD):	163.20	End:	30/04/2	2020
Sam	ples ar	ıd In Situ Testing	Depth	Level	Logond		Stratum Description		Water	Well
Depth (m)	Туре	Results	s (m)	(m OD)	Legend	-	Stratum Description		Strike	weii
0.10	ES		0.55	162.65			fine to coarse slate gravel.		 0.5	
0.70	ES			102.03		Pale pink orange grev COBBLES of weak sla WEATHERED SALTASI)	-	
1.00	DS		1.30	161.90		Pink grey slightly silt	y angular tabular GRAVEL, COBBLE:	Sand	— 1.0 — —	
						BOULDERS of weak s WEATHERED SALTASI	late.		 1.5 	
			1.90	161.30		4	End of Pit at 1.90m			
									- 2.5 	
									 3.0 	
									 3.5 	
									 4.0 	
									- - 4.5 -	
									 5.0	
						General Remarks: No groundwater encou	intered Dit stable		Loggeo TT	
						no grounuwater encol	מותכופט. דוג גומטופ.		Approve TT	ed By:
									Scale	e:
Stability: Shoring:	Non	e				Method/Plant Used:	JCB 3CX		1:2! Sheet 1	
						· · · · · · · · · · · · · · · · · · ·				

clarke	hor	nd			-	Trial Pit Log			Trial Pit No.: TP04			
						C. Ondinatas						
Project Name: Project Numb		Connon Bridge				Co-Ordinates: Ground Level (m OD	217662 E 62151 N	Start End:				
		nd In Situ Testing	Dauth					Water				
Depth (m)	Туре	Results	Depth Level (m) (m OD) Legend			Stratum Description			Well			
0.10	ES		0.25 161.25 MADE GROUND 161.25 MADE GROUND: Grey clayey angular fine to coarse slate gravel. Pale pink orange grey slightly silty angular GRAVEL AND									
						COBBLES of weak s WEATHERED SALTA			- 0.5 			
0.90 - 1.20 1.00	B DS								- 1.0 -			
			1.30	160.20	adda adda adda adda adda adda adda add				- - 1.5 - -			
			2.30	159.20	radion and the second s				- 2.0 			
			2.50	155.20			End of Pit at 2.30m		-			
									— 2.5 —			
									_			
									-			
									3.0 			
									-			
									-			
									- 3.5 - -			
									_			
									4.0 			
									-			
									- - 4.5			
									-			
									- 			
						General Remarks: No groundwater encountered. Some overbreak below 1.30m. Hard digging in slate.			TT Approve	Logged By: TT Approved By:		
									TT Scale	e:		
Stability:	N1	2				Mothod /Diast Line				1:25 Sheet 1 of 1		
Shoring:	Non	e				Method/Plant Used:		. 01 1				

					_				Trial Pit No.:		
clarke	bor	nd			_	Trial Pit L	og		TP05	5	
Project Name:	C	onnon Bridge				Co-Ordinates:	217668 E 62168 N	Start:	30/04/2	2020	
Project Numbe	er: E	05284				Ground Level (m O	D): 160.10	End:	30/04/2	2020	
Sam	ples ar	nd In Situ Testing	Depth		Legend		Stratum Description		Water	Well	
Depth (m)	Туре	Results	(m)	(m OD)	Legena				Strike	Wein	
						MADE GROUND Pale orange / pin	k / grey slightly clayey angular fin	e to	-		
			0.20	159.90		coarse slate grave	el.	/	ſ		
						COBBLES of weak	grey slightly silty angular GRAVEL < slate.	AND	-		
0.50	ES					WEATHERED SAL	TASH FORMATION		- 0.5 -		
									-		
									-		
1.00 - 1.20	В								- 1.0		
1.20	DS		1.20	158.90		Dink grov slightly	silty angular tabular GRAVEL, CO	DDI ES and	F		
						BOULDERS of we	ak slate.	SBLES allu	-		
						WEATHERED SAL	TASH FORMATION		- 1.5		
							-				
									-		
			1.90	158.20			to thinly bedded closely fracture		2.0		
					- 316	grey SLATE. Recc	overed as silty angular tabular gra Iders.	vel,	-		
			2.30	157.80		SALTASH FORMA	TION		È.		
							End of Pit at 2.30m		-		
									- 2.5		
									-		
									-		
									- 3.0		
									-		
									F		
									- 3.5		
									-		
									4.0		
									-		
									-		
									-		
									- 4.5 -		
									-		
									-		
									5.0		
	I	l	I	I	1	General Remarks:			Logged		
						No groundwater er Hard digging in slat	ncountered. Some overbreak belo te.	w 1.90m.	TT Approve		
									TT	-	
Stability:						-			1:2	5	
Shoring:	Non	e				Method/Plant Use	d: JCB 3CX		Sheet 1	L of 1	

						Trial P	Trial Pit No.:				
clarke	bor	nd			-	Trial Pit Lo	g		TP06		
Project Name	: C	onnon Bridge				Co-Ordinates:	217689 E 62155 N	Start:	rt: 30/04/202		
Project Numb	er: E	05284				Ground Level (m OD):	158.70	End:	nd: 30/04/2020		
Samples and In Situ Testing		Depth	Level	Logond		Stratum Deceription		Water	Well		
Depth (m)	Туре	Results	₅ (m)	(m OD)	Legend		Stratum Description		Strike	weii	
0.10	ES		0.20	158.50		MADE GROUND	fine to coarse slate gravel. grey slightly clayey angular grave te.	el and	- - - 0.5		
			0.60	158.10		Pale pink orange gre COBBLES of weak sla WEATHERED SALTAS		ND	-		
									- 1.0 - - - - 1.5		
			1.70	157.00		Pink grey slightly silt BOULDERS of weak WEATHERED SALTAS		LES and	- - - - 2.0		
			2.10	156.60			End of Pit at 2.10m		- 2.0		
						Constal Domacka			- 2.5 - 2.5 - 3.0 - 3.0 	By	
						General Remarks: No groundwater enco	ountered. Some overbreak below	Approved B TT Scale:			
Stability: Shoring:	Non	<u></u>				Method/Plant Used			1:2 Sheet 1		
SHOLING.	NOU	C				Aethod/Plant Used: JCB 3CX Shee					

TP01

TP01

TP01

E05284-CLK-00-XX-RP-GT-0002 May 2020

TP02

TP02

E05284-CLK-00-XX-RP-GT-0002 May 2020

TP03

E05284-CLK-00-XX-RP-GT-0002 May 2020

Connon Bridge

TP04

TP04

TP04

E05284-CLK-00-XX-RP-GT-0002 Connon Bridge May 2020

TP05

TP05

TP05

E05284-CLK-00-XX-RP-GT-0002 Connon Bridge May 2020

TP06

TP06

TP06

E05284-CLK-00-XX-RP-GT-0002 Connon Bridge May 2020

D Geotechnical Test Certificates

SOUTH WES	GEOTE			Ном	chnical Lt rooklands den Road Tivertor Devo EX16 5HV
Job No:		12418	Date Received:	06/05/2	0
Job Name:		Connon Bridge, Liskeard	Date Sent:	29/05/2	
Client Name	:	ClarkeBond Exeter	Transmittal Number:		-
Client Job No		0	Senders Initials:	DT	
		-	Report Revision No.	1	
Client Addre	SS	GF Suite, Bickleigh House, Park Five Buisiness Centre, Sowton, Exeter, EX2 7HU	Sampled by SWG lab st		NO
				No. of Tes	ts /
Ref.		Test Detail		Report N	
A1		BS1377: Part 2: 1990: Clause 3 - Moisture Content - UKA	S Accredited	3	
A9		7: Part 2: 1990: Clause 9.2 / 9.3 - Particle Size Distribution		3	
B6.2	BS1377	: Part 4: 1990: Clause 7 - Determination of the California method - UKAS Accredited	Bearing Ratio - 4.5kg	3	
Sampl Approved Sig		rformed by South West Geotechnical laboratory staff. F	Results apply to the same	oles as receive	d.
David Trowbr Dan Ayre (Qu Matt Stokes (The results c	idge (Labor ality Mana Senior Tecl ontained	ratory Manager) ger) nnician) within this report only relate to the samples tested, as r nall not be reproduced except in full, without prior writt		UKAS 8260 Accredited ISO/IEC	
		laboratory.		ISU/IEC	

SOUTH WE	ST GEO	DTECHN	ICAL		Summary of Classification Test Results											
Proj	ect No.				Project Name							_ 🎉 _				
12	2418		$\begin{tabular}{ c c c c c c } \hline C & C & C & C & C & C & C & C & C & C$													
Client	Job No).		Client Client Clarke Bond Mc Passing 425µm LL PL PI Particle density Ref Soil Description Cl.3.2 Cl.3.2 Cl.3.2 Cl.5.3 Cl5.4 Cl.3.2							UKAS TESTING 8260					
12	2418											Accredited to ISO/IEC 17025:2017				
		Sa	mple			тс		LL	PL	PI						
Hole No.	Туре	Тор	Base	Ref	Soil Description							Remarks				
TDee																
TP02	В	0.60	1.00	-	Pinkish brown very silty very sandy GRAVEL	13	-	-	-	-	-					
TP04	В	0.90	1.20	-	Pinkish brown very silty very sandy GRAVEL with cobble	12	-	-	-	-	-					
TP05	В	1.00	1.20	-	Pinkish brown very silty very sandy GRAVEL	12	-	-	-	-	-					
						-	-	-	-	-	-					
						-	-	-	-	-	-					
						-	-	-	-	-	-					
						-	-	-	-	-	-					
						-	-	-	-	-	-					
						-	-	-	-	-	-					
						-	-	-	-	-	-					
	Prep	aration	Clauses	: Particl	e Density (BS1377:Part 1: 1990: CL7.4.4) Atterberg Limits (BS1377:Part 1: 1990)	CL7.4.3) Moisture C	ontent	(BS137	7: Part	1: 1990: C	L7.3.3 & 7.4.2)				

Key Atterberg Limits BS1377-2:1990 4pt cone (CL.4.3) unless : sp - small pyknometer CL.8.3	Date	Approved By	Page No.	1
1pt - single point test (CL.4.4) gj - gas jar CL.8.2 4.2.3 - Natural 4.2.4 - Sieved Moisture Content (mc) %	29/05/2020	Dan Ayre - Quality Manager	KL001R Inde	ex Summary

T5636 Test Report.pdf

						Project No.	12418
SOUTH WEST GEOTECH	NICAL	P	ARTICLE SIZ	E DISTRIBUT	ION	Borehole/Pit No.	TP02
Project Name	e	Connon Brid	ge, Liskeard			Sample No.	-
Soil Descript	tion	Pinkish brown	very silty very sand			Depth, m	0.60
Specimen Reference		2	Specim Depth	nen	m	Sample Type	В
Test Method		BS1377:Part 2	:1990, clause 9.2				
CLAY	, Fine	SILT e Medium	Coarse Fine	SAND Medium C	oarse Fine	GRAVEL Medium Coarse	COBBLES BOULDERS
100							
90 -						/ / /	
80 -						/	
70						/	
<u></u>							
60							
ซี บ 50 -							
litag							
30							
20 -							
20							
10							
0							
0.001		0.01	0.1	Particle S	1 Size mm	10	100 1000
	Siev	ving	Sedin	nentation	Dry M	lass of sample, g	2689
			Dentiele Olere				
Particle mm		% Passing	Particle Size mm	% Passing			
				% Passing	Sample Pr	oportions	% dry mass
				% Passing		oportions	% dry mass 0 56
				% Passing	Sample Pr Very coars	oportions	0
	1	% Passing		% Passing	Sample Pr Very coars Gravel	oportions se	0 56
mm 	5	% Passing		% Passing	Sample Pr Very coars Gravel Sand	oportions se 63mm	0 56 18 26
97.5	5	% Passing		% Passing	Sample Pr Very coars Gravel Sand	oportions se	0 56 18 26
mm 37.(28 20 14	5	% Passing 100 88 72 64 58		% Passing	Sample Pr Very coars Gravel Sand Fines <0.0 D100 D60	oportions se 63mm Grading A mm mm	0 56 18 26 nalysis 37.5 11.1
mm 37.5 28 20 14	5	% Passing 100 88 72 64		% Passing	Sample Pr Very coars Gravel Sand Fines <0.0	oportions se 63mm Grading A mm	0 56 18 26 nalysis 37.5
mm 37.(28 20 14 10 6.3 5 3.33	5	% Passing 100 88 72 64 58 52 50 48		% Passing	Sample Pr Very coars Gravel Sand Fines <0.0 D100 D60 D30 D10 Uniformity	63mm Grading Ar mm mm mm r Coefficient	0 56 18 26 nalysis 37.5 11.1
mm 37.(28 20 14 10 6.3 5	1 5 3 5	% Passing 100 88 72 64 58 52 50		% Passing	Sample Pr Very coars Gravel Sand Fines <0.0 D100 D60 D30 D10 Uniformity	oportions se 63mm Grading Ar mm mm mm	0 56 18 26 nalysis 37.5 11.1
mm 37.5 28 20 14 10 6.3 5 3.35 2 1.15 0.65	1 5 5 5 8 3	% Passing 100 88 72 64 58 52 50 48 44 40 36		% Passing	Sample Pr Very coars Gravel Sand Fines <0.0 D100 D60 D30 D10 Uniformity	63mm Grading Ar mm mm mm r Coefficient	0 56 18 26 nalysis 37.5 11.1
mm 37.5 28 20 14 10 6.3 5 3.33 2 2 1.11 0.65 0.42	n 5 5 5 8 8 3 2:5	% Passing 100 88 72 64 58 52 50 48 44 44 40 36 34		% Passing	Sample Pr Very coars Gravel Sand Fines <0.0 D100 D60 D30 D10 Uniformity Curvature Remarks Preparation a	63mm Grading Ar mm mm mm r Coefficient	0 56 18 26 nalysis 37.5 11.1
mm 37.4 28 20 14 10 6.3 5 3.33 2 2 1.11 0.66 0.42 0.3 0.2	1 5 5 6 7 8 3 25 8 25 3 25	% Passing 100 88 72 64 58 52 50 48 44 44 40 36 34 32 30		% Passing	Sample Pr Very coars Gravel Sand Fines <0.0 D100 D60 D30 D10 Uniformity Curvature Remarks Preparation a BS13	63mm 63mm 63mm Grading Au mm mm mm coefficient Coefficient Coefficient	0 56 18 26 nalysis 37.5 11.1 0.201
mm 37.5 28 20 14 10 6.3 5 3.35 2 1.15 0.66 0.42 0.3 0.2 0.15	n 5 5 5 8 3 2 5 5 5 5	% Passing 100 88 72 64 58 52 50 48 44 44 40 36 34 32 30 29		% Passing	Sample Pr Very coars Gravel Sand Fines <0.0 D100 D60 D30 D10 Uniformity Curvature Remarks Preparation a BS13 Preparation a BS1377 - Dev material P	63mm 63mm 63mm 63mm 63mm 63mm 63mm mm mm mm Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient	0 56 18 26 nalysis 37.5 11.1 0.201
mm 37.4 28 20 14 10 6.3 5 3.33 2 2 1.11 0.66 0.42 0.3 0.2	n 5 5 5 8 3 2 5 5 5 5	% Passing 100 88 72 64 58 52 50 48 44 44 40 36 34 32 30		% Passing	Sample Pr Very coars Gravel Sand Fines <0.0 D100 D60 D30 D10 Uniformity Curvature Remarks Preparation a BS13 Preparation a BS1377 - Dev material P	63mm 63mm 63mm 63mm 63mm 63mm 63mm 63mm	0 56 18 26 nalysis 37.5 11.1 0.201
mm 37.5 28 20 14 10 6.3 5 3.35 2 1.15 0.66 0.42 0.3 0.2 0.15 0.06	n 5 5 5 8 3 2 5 5 5 5	% Passing 100 88 72 64 58 52 50 48 44 44 40 36 34 32 30 29 26		% Passing	Sample Pr Very coars Gravel Sand Fines <0.0 D100 D60 D30 D10 Uniformity Curvature Remarks Preparation a BS1377 - Dev material p minin	63mm 63mm 63mm 63mm 63mm 63mm 63mm mm mm mm Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient	0 56 18 26 nalysis 37.5 11.1 0.201

					Project No.	12418
OUTH WEST GEOTECHNICAL		RTICLE SIZE	DISTRIBUTIO	N	Borehole/Pit No.	TP04
Project Name	Connon Bridge	e, Liskeard			Sample No.	-
Soil Description	Pinkish brown v	ery silty very sandy G	RAVEL with cobble		Depth, m	0.90
Specimen Reference	2	Specimen Depth		m	Sample Type	В
Test Method	BS1377:Part 2: ⁻	1990, clause 9.2				
CLAY	SILT ne Medium	Coarse Fine	SAND Medium Coarse	e Fine	GRAVEL Medium Coarse	COBBLES BOULDERS
100						
90						
80						
70						
,						
60						
50						
60						
40						
30						
20						
10						
0	0.01	0.1	<u> </u>		10	100 100
						100 100
		0.1	Particle Size	mm		100 100
	eving	Sedimen			ass of sample. a	
Particle Size		Sedimen Particle Size			ass of sample, g	3608
	eving	Sedimen	tation			
Particle Size mm	eving % Passing	Sedimen Particle Size	tation	Dry Ma Sample Pro Very coars	oportions	3608 % dry mass 14
Particle Size mm 75	eving % Passing 100	Sedimen Particle Size	tation	Dry Ma Sample Pro Very coars Gravel	oportions	3608 % dry mass 14 40
Particle Size mm 75 63 50	eving % Passing 100 86 81	Sedimen Particle Size	tation	Dry Ma Sample Pro Very coars Gravel Sand	pportions e	3608 % dry mass 14 40 20
Particle Size mm 75 63 50 37.5	eving % Passing 100 86 81 74	Sedimen Particle Size	tation	Dry Ma Sample Pro Very coars Gravel	pportions e	3608 % dry mass 14 40
Particle Size mm 75 63 50	eving % Passing 100 86 81	Sedimen Particle Size	tation	Dry Ma Sample Pro Very coars Gravel Sand	pportions e	3608 % dry mass 14 40 20 26
Particle Size mm 75 63 50 37.5 28 20 14	% Passing % Passing 100 86 81 74 69 63 59	Sedimen Particle Size	tation	Dry Ma Sample Pro Very coars Gravel Sand Fines <0.06	oportions e 53mm	3608 % dry mass 14 40 20 26 alysis 75
Particle Size mm 75 63 50 37.5 28 20 14 10	% Passing % Passing 100 86 81 74 69 63 59 55	Sedimen Particle Size	tation	Dry Ma Sample Pro Very coars Gravel Sand Fines <0.06	oportions e 63mm Grading Ar mm mm	3608 % dry mass 14 40 20 26 alysis 75 15.1
Particle Size mm 75 63 50 37.5 28 20 14	% Passing % Passing 100 86 81 74 69 63 59	Sedimen Particle Size	tation	Dry Ma Sample Pro Very coars Gravel Sand Fines <0.06	oportions e 63mm Grading Ar mm	3608 % dry mass 14 40 20 26 alysis 75
Particle Size mm 75 63 50 37.5 28 20 14 10 6.3 5 3.35	% Passing % Passing 100 86 81 74 69 63 59 55 52 50 49	Sedimen Particle Size	tation	Dry Ma Sample Pro Very coars Gravel Sand Fines <0.06 D100 D60 D30 D10 Uniformity	oportions e 53mm Grading An mm mm mm Coefficient	3608 % dry mass 14 40 20 26 alysis 75 15.1
Particle Size mm 75 63 50 37.5 28 20 14 10 6.3 5 3.35 2	% Passing % Passing 100 86 81 74 69 63 59 55 52 50 49 46	Sedimen Particle Size	tation	Dry Ma Sample Pro Very coars Gravel Sand Fines <0.06 D100 D60 D30 D10	oportions e 53mm Grading An mm mm mm Coefficient	3608 % dry mass 14 40 20 26 alysis 75 15.1
Particle Size mm 75 63 50 37.5 28 20 14 10 6.3 5 3.35	% Passing % Passing 100 86 81 74 69 63 59 55 52 50 49	Sedimen Particle Size	tation	Dry Ma Sample Pro Very coars Gravel Sand Fines <0.06 D100 D60 D30 D10 Uniformity	oportions e 53mm Grading An mm mm mm Coefficient	3608 % dry mass 14 40 20 26 alysis 75 15.1
Particle Size mm 75 63 50 37.5 28 20 14 10 6.3 5 3.35 2 1.18 0.63 0.425	% Passing % Passing 100 86 81 74 69 63 59 55 52 50 49 46 43 38 36	Sedimen Particle Size	tation	Dry Ma Sample Pro Very coars Gravel Sand Fines <0.00 D100 D60 D30 D10 Uniformity Curvature of Remarks Preparation a	oportions e 53mm Grading An mm mm mm Coefficient Coefficient	3608 % dry mass 14 40 20 26 alysis 75 15.1
Particle Size mm 75 63 50 37.5 28 20 14 10 6.3 5 3.35 2 1.18 0.63 0.425 0.3	% Passing % Passing 100 86 81 74 69 63 59 55 52 50 49 46 43 38 36 33	Sedimen Particle Size	tation	Dry Ma Sample Pro Very coars Gravel Sand Fines <0.00 D100 D60 D30 D10 Uniformity Curvature of Remarks Preparation a BS137	by portions e 63mm Grading Ar mm mm mm Coefficient Coefficient Coefficient	3608 % dry mass 14 40 20 26 alysis 75 15.1
Particle Size mm 75 63 50 37.5 28 20 14 10 6.3 5 3.35 2 1.18 0.63 0.425	% Passing % Passing 100 86 81 74 69 63 59 55 52 50 49 46 43 38 36	Sedimen Particle Size	tation	Dry Ma Sample Pro Very coars Gravel Sand Fines <0.06 D100 D60 D30 D10 Uniformity Curvature of Remarks Preparation a BS1377 - Devia	pportions e 53mm Grading An mm mm mm Coefficient Coefficient Coefficient Coefficient	3608 % dry mass 14 40 20 26 alysis 75 15.1 0.173
Particle Size mm 75 63 50 37.5 28 20 14 10 6.3 5 3.35 2 1.18 0.63 0.425 0.3 0.2	% Passing % Passing 100 86 81 74 69 63 59 55 52 50 49 46 43 38 36 33 31	Sedimen Particle Size	tation	Dry Ma Sample Pro Very coars Gravel Sand Fines <0.00 D100 D60 D30 D10 Uniformity Curvature of Remarks Preparation a BS1377 - Devia material pro	pportions e 33mm Grading An mm mm Coefficient Coefficient Coefficient	3608 % dry mass 14 40 20 26 alysis 75 15.1 0.173
Particle Size mm 75 63 50 37.5 28 20 14 10 6.3 5 3.35 2 1.18 0.63 0.425 0.3 0.2 0.15	% Passing % Passing 100 86 81 74 69 63 59 55 52 50 49 46 43 38 36 33 31	Sedimen Particle Size	tation	Dry Ma Sample Pro Very coars Gravel Sand Fines <0.00 D100 D60 D30 D10 Uniformity Curvature of Remarks Preparation a BS1377 - Devia material pro	coportions e common contractions contraction	3608 % dry mass 14 40 20 26 alysis 75 15.1 0.173
Particle Size mm 75 63 50 37.5 28 20 14 10 6.3 5 3.35 2 1.18 0.63 0.425 0.3 0.2 0.15	% Passing % Passing 100 86 81 74 69 63 59 55 52 50 49 46 43 38 36 31 29 26	Sedimen Particle Size	tation	Dry Ma Sample Pro Very coars Gravel Sand Fines <0.00 D100 D60 D30 D10 Uniformity Curvature of Remarks Preparation a BS1377 - Devia material pro	coportions e common contractions contraction	3608 % dry mass 14 40 20 26 alysis 75 15.1 0.173

T5636 Test Report.pdf

							Project No.	12418
SOUTH WEST	GEOTECHNICAL				DISTRIBUT		Borehole/Pit No.	TP05
Project	t Name	Connon Brid	ge, Liske	ard			Sample No.	-
Soil De	escription	Pinkish brown	very silty v	very sandy G	BRAVEL		Depth, m	1.00
Specin Refere		2		Specimen Depth		m	Sample Type	В
Test M	lethod	BS1377:Part 2	::1990, cla	use 9.2				
-	CLAY	SILT ne Medium	Coarse	Fine	SAND Medium C	coarse Fine	GRAVEL Medium Coarse	COBBLES BOULDERS
100								
90								
80								
70							/	
° 1								
Centrade Lassing								
ซี ม 50							1	
<u> </u>				-				
						1		
30								
20								
10								
10 0								
0	.001	0.01		0.1	Particle	1	10	100 1000
0 0.	.001 Sie	0.01	Dorti	Sedimen		1 Size mm	10 Mass of sample, g	100 1000
0 0.	.001					1 Size mm		
0 0.	.001 Sie	ving		Sedimen icle Size	ntation	1 Size mm Dry I Sample P	lass of sample, g	4904 % dry mass
0 0.	.001 Sie	ving		Sedimen icle Size	ntation	1 Size mm Dry I Sample P Very coar	lass of sample, g	4904 % dry mass 0
0 0.	.001 Sie	ving		Sedimen icle Size	ntation	1 Size mm Dry I Sample P	lass of sample, g	4904 % dry mass
0 0.	.001 Sie Particle Size mm	ving % Passing		Sedimen icle Size	ntation	1 Size mm Dry I Sample P Very coar Gravel Sand	lass of sample, g roportions se	4904 % dry mass 0 56 22
0 0.	.001 Sie Particle Size mm 50 37.5	ving % Passing 		Sedimen icle Size	ntation	1 Size mm Dry I Sample P Very coar Gravel	lass of sample, g roportions se	4904 % dry mass 0 56
0 0.	.001 Sie Particle Size mm	ving % Passing		Sedimen icle Size	ntation	1 Size mm Dry I Sample P Very coar Gravel Sand	Mass of sample, g roportions se D63mm	4904 % dry mass 0 56 22 22 22
0 0.	.001 Sie Particle Size mm 50 37.5 28 20 14	ving % Passing 100 92 91 78 72		Sedimen icle Size	ntation	1 Size mm Dry I Sample P Very coat Gravel Sand Fines <0.	lass of sample, g roportions se	4904 % dry mass 0 56 22 22 1 22 1 1 1 22 1 1 50
0 0.	.001 Sie Particle Size mm 50 37.5 28 20 14 10	ving % Passing 100 92 91 78 72 62		Sedimen icle Size	ntation	1 Size mm Dry I Sample P Very coat Gravel Sand Fines <0. D100 D60	Mass of sample, g roportions se 063mm Grading Ar mm mm	4904 % dry mass 0 56 22 22 nalysis 50 8.76
0 0.	.001 Sie Particle Size mm 50 37.5 28 20 14	ving % Passing 100 92 91 78 72		Sedimen icle Size	ntation	1 Size mm Dry I Sample P Very coat Gravel Sand Fines <0.	Mass of sample, g roportions se 063mm Grading Ar mm mm	4904 % dry mass 0 56 22 22 22 nalysis 50
0 0.	.001 Sie Particle Size mm 50 37.5 28 20 14 10 6.3	ving % Passing 100 92 91 78 72 62 55 52 49		Sedimen icle Size	ntation	1 Size mm Dry I Sample P Very coat Gravel Sand Fines <0. D100 D60 D30 D10 Uniformit	Mass of sample, g roportions se 063mm Grading Ar mm mm mm y Coefficient	4904 % dry mass 0 56 22 22 nalysis 50 8.76
0 0.	.001 Sie Particle Size mm 50 37.5 28 20 14 10 6.3 5 3.35 2	ving % Passing 100 92 91 78 72 62 55 52 49 44		Sedimen icle Size	ntation	1 Size mm Dry I Sample P Very coat Gravel Sand Fines <0. D100 D60 D30 D10 Uniformit	Mass of sample, g roportions se 063mm Grading Ar mm mm mm	4904 % dry mass 0 56 22 22 nalysis 50 8.76
0 0.	.001 Sie Particle Size mm 50 37.5 28 20 14 10 6.3 5 3.35 2 1.18	ving % Passing 100 92 91 78 72 62 55 52 49 49 44 39		Sedimen icle Size	ntation	1 Size mm Dry I Sample P Very coat Gravel Sand Fines <0. D100 D60 D30 D10 Uniformit Curvature	Mass of sample, g roportions se 063mm Grading Ar mm mm mm y Coefficient	4904 % dry mass 0 56 22 22 nalysis 50 8.76
0 0.	.001 Sie Particle Size mm 50 37.5 28 20 14 10 6.3 5 3.35 2	ving % Passing 100 92 91 78 72 62 55 52 49 44		Sedimen icle Size	ntation	1 Size mm Dry I Sample P Very coal Gravel Sand Fines <0. D100 D60 D30 D10 Uniformit Curvature Remarks	Mass of sample, g roportions se D63mm Grading Ar mm mm y Coefficient e Coefficient	4904 % dry mass 0 56 22 22 nalysis 50 8.76
0 0.	.001 Sie Particle Size mm 50 37.5 28 20 14 10 6.3 5 3.35 2 1.18 0.63	ving % Passing 100 92 91 78 72 62 55 52 49 49 44 44 39 33 30 28		Sedimen icle Size	ntation	1 Size mm Dry I Sample P Very coar Gravel Sand Fines <0. D100 D60 D30 D10 Uniformit Curvature Remarks Preparation	Mass of sample, g roportions se 063mm Grading Ar mm mm mm y Coefficient	4904 % dry mass 0 56 22 22 nalysis 50 8.76
0 0.	.001 Sie Particle Size mm 50 37.5 28 20 14 10 6.3 5 3.35 2 1.18 0.63 0.425 0.3 0.2	ving % Passing 100 92 91 78 72 62 55 52 49 49 44 44 39 33 30 28 26		Sedimen icle Size	ntation	1 Size mm Dry I Sample P Very coat Gravel Sand Fines <0. D100 D60 D30 D10 Uniformit Curvature Remarks Preparation BS1 Preparation	Mass of sample, g roportions se 063mm 075000 075000 075000 075000 075000 075000 075000000 075000 0750000000000	4904 % dry mass 0 56 22 22 nalysis 50 8.76 0.441
0 0.	.001 .001 Particle Size mm 50 37.5 28 20 14 10 6.3 5 3.35 2 1.18 0.63 0.425 0.3 0.2 0.15	ving % Passing 100 92 91 78 72 62 55 52 49 49 44 44 39 33 30 28 28 26 25		Sedimen icle Size	ntation	1 Size mm Dry I Sample P Very coal Gravel Sand Fines <0. D100 D60 D30 D10 Uniformit Curvature BS1 Preparation BS1377 - De BS1 Preparation BS1377 - De	Mass of sample, g roportions se D63mm Grading Ar mm mm y Coefficient Coefficient and testing in accordance with viation to standard as insufficient provided in order to meet the	4904 % dry mass 0 56 22 22 nalysis 50 8.76 0.441
0 0.	.001 Sie Particle Size mm 50 37.5 28 20 14 10 6.3 5 3.35 2 1.18 0.63 0.425 0.3 0.2	ving % Passing 100 92 91 78 72 62 55 52 49 49 44 44 39 33 30 28 26		Sedimen icle Size	ntation	1 Size mm Dry I Sample P Very coal Gravel Sand Fines <0. D100 D60 D30 D10 Uniformit Curvature BS1 Preparation BS1377 - De BS1 Preparation BS1377 - De	Mass of sample, g roportions se D63mm Grading Ar mm mm y Coefficient and testing in accordance with 377 unless noted below and testing in accordance with viation to standard as insufficient	4904 % dry mass 0 56 22 22 alysis 50 8.76 0.441
0 0.	.001 .001 Particle Size mm 50 37.5 28 20 14 10 6.3 5 3.35 2 1.18 0.63 0.425 0.3 0.2 0.15	ving % Passing 100 92 91 78 72 62 55 52 49 44 44 39 33 30 28 26 25 25 22		Sedimen icle Size	ntation	1 Size mm Dry I Sample P Very coal Gravel Sand Fines <0. D100 D60 D30 D10 Uniformit Curvature BS1 Preparation BS1377 - De material min	Mass of sample, g roportions se D63mm Grading Ar mm mm y Coefficient Coefficient and testing in accordance with viation to standard as insufficient provided in order to meet the	4904 % dry mass 0 56 22 22 malysis 50 8.76 0.441

E Chemical Test Certificates

Tim Thornburn Clarkebond 129 Cumberland Road Bristol BS1 6UY

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

e: timthornburn@clarkebond.com

Analytical Report Number : 20-98485

Project / Site name:	Connon Bridge	Samples received on:	05/05/2020
Your job number:	E05284	Samples instructed on:	05/05/2020
Your order number:	P09382	Analysis completed by:	13/05/2020
Report Issue Number:	1	Report issued on:	13/05/2020
Samples Analysed:	10 soil samples		

Signed: Karoline Harel

Karolina Marek Head of Reporting Section

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils	 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Iss No 20-98485-1 Connon Bridge E05284.XLS

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis.

Project / Site name: Connon Bridge

Lak Camula Number				1504672	1504674	1504675	1504676	1504677
Lab Sample Number				1504673	1504674	1504675	1504676	1504677
Sample Reference				TP01	TP02	TP03	TP03	TP03
Sample Number				None Supplied				
Depth (m)				0.10	1.00	0.10	0.70	1.00
Date Sampled				30/04/2020	30/04/2020	30/04/2020	30/04/2020	30/04/2020
Time Taken		1	-	None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	16	10	9.7	8.9	9.9
Total mass of sample received	kg	0.001	NONE	0.80	0.90	1.0	1.0	0.90
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	-	Not-detected	Not-detected	-
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	7.4	6.8	7.8	7.2	7.0
Total Sulphate as SO₄	%	0.005	MCERTS	-	< 0.005	-	-	0.010
Water Soluble SO4 16hr extraction (2:1 Leachate	,,,	0.000						0.010
Equivalent) Water Soluble SO4 16hr extraction (2:1 Leachate	g/l	0.00125	MCERTS	0.011	0.0089	0.0083	0.010	0.011
Equivalent)	mg/l	1.25	MCERTS	-	8.9	-	-	11.1
Total Sulphur	%	0.005	MCERTS	-	< 0.005	-	-	0.007
Organic Matter	%	0.1	MCERTS	1.8	-	0.5	0.3	-
Creatisted DAUs								
Speciated PAHs Naphthalene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	< 0.05	-
Acenaphthylene		0.05	MCERTS	< 0.05	-	< 0.05	< 0.05	-
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	< 0.05	-
Fluorene	mg/kg mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	< 0.05	-
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	< 0.05	_
Anthracene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	< 0.05	_
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	< 0.05	-
Pyrene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	< 0.05	_
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	< 0.05	-
Chrysene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	< 0.05	-
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	< 0.05	-
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	< 0.05	-
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	< 0.05	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	< 0.05	-
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	< 0.05	-
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	< 0.05	-
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	-	< 0.80	< 0.80	-
Heavy Metals / Metalloids	m = //+=	1	MCEDIC	27	-	24	20	
Arsenic (aqua regia extractable) Cadmium (aqua regia extractable)	mg/kg mg/kg	0.2	MCERTS MCERTS	< 0.2	-	< 0.2	< 0.2	-
Chromium (hexavalent)	mg/kg	<u> </u>	MCERTS	< 4.0	-	< 4.0	< 4.0	-
Chromium (nexavalent) Chromium (aqua regia extractable)	mg/kg mg/kg	4	MCERTS	42	-	45	< 4.0 49	
Copper (aqua regia extractable)	mg/kg mg/kg	1	MCERTS	42 49	-	23	28	-
Lead (aqua regia extractable)	mg/kg	1	MCERTS	27	-	23	30	-
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	-	< 0.3	< 0.3	-
Nickel (aqua regia extractable)	mg/kg	0.5	MCERTS	50	-	58	60	-
Selenium (aqua regia extractable)	mg/kg mg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0	-
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	110	-	100	110	-
בוויב נטקטם וכעום באנו מנומטולן	шу/ку	<u> </u>	PICERIS	110	· · ·	100	110	-

Project / Site name: Connon Bridge

Lab Sample Number				1504673	1504674	1504675	1504676	1504677
Sample Reference				TP01	TP02	TP03	TP03	TP03
Sample Number				None Supplied				
Depth (m)				0.10	1.00	0.10	0.70	1.00
Date Sampled		30/04/2020	30/04/2020	30/04/2020	30/04/2020	30/04/2020		
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics & Oxygenates	-		-					
Benzene	µg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0	-
Toluene	µg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0	-
Ethylbenzene	µg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0	-
p & m-xylene	µg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0	_
o-xylene	µg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0	-
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0	-

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	-	< 0.001	< 0.001	-
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	-	< 0.001	< 0.001	-
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	-	< 0.001	< 0.001	-
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0	-
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	-	< 2.0	< 2.0	-
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	-	< 8.0	< 8.0	-
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	-	< 8.0	< 8.0	-
TPH-CWG - Aliphatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	-	< 8.4	< 8.4	-
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	-	< 10	< 10	-
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	-	< 0.001	< 0.001	-
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	-	< 0.001	< 0.001	-
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	-	< 0.001	< 0.001	-
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0	-
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	-	< 2.0	< 2.0	-
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	-	< 10	< 10	-
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	-	< 10	< 10	-
TPH-CWG - Aromatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	-	< 8.4	< 8.4	-
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	-	< 10	< 10	-

Project / Site name: Connon Bridge

Lab Camala Namban				1504670	1504670	1504600	1504601	1504602
Lab Sample Number				1504678	1504679	1504680	1504681	1504682
Sample Reference				TP04	TP04	TP05	TP05	TP06
Sample Number				None Supplied				
Depth (m)				0.10	1.00	0.70	1.20	0.10
Date Sampled				30/04/2020	30/04/2020	30/04/2020	30/04/2020	30/04/2020
Time Taken	-			None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	7.4	7.8	9.5	8.4	12
Total mass of sample received	kg	0.001	NONE	0.90	1.0	1.1	1.1	0.90
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	-	Not-detected	-	Not-detected
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	8.2	7.1	7.1	7.0	8.0
Total Sulphate as SO₄	%	0.005	MCERTS	-	0.006	-	< 0.005	-
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.015	0.012	0.0074	0.0073	0.021
Water Soluble SO4 16hr extraction (2:1 Leachate		1.05					7.5	
Equivalent)	mg/l	1.25	MCERTS	-	11.9	-	7.3	-
Total Sulphur	%	0.005	MCERTS	-	< 0.005	-	< 0.005	-
Organic Matter	%	0.1	MCERTS	0.6	-	0.4	-	1.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	-	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	-	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	-	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	-	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	-	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	-	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	-	< 0.05
Pyrene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	-	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	-	< 0.05
Chrysene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	-	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	-	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	-	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	-	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	-	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	-	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	-	< 0.05
Total PAH					1		1	
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	-	< 0.80	-	< 0.80
Heavy Metals / Metalloids		1			1		1	
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	24	-	25	-	28
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	-	< 0.2	-	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	-	< 4.0	-	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	36	-	51	-	41
Copper (aqua regia extractable)	mg/kg	1	MCERTS	22	-	19	-	27
Lead (aqua regia extractable)	mg/kg	1	MCERTS	21	-	28	-	31
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	-	< 0.3	-	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	47	-	65	-	56
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	97	-	120	-	110

Project / Site name: Connon Bridge

Lab Sample Number		1504678	1504679	1504680	1504681	1504682		
Sample Reference		TP04	TP04	TP05	TP05	TP06		
Sample Number				None Supplied				
Depth (m)				0.10	1.00	0.70	1.20	0.10
Date Sampled				30/04/2020	30/04/2020	30/04/2020	30/04/2020	30/04/2020
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)								
Monoaromatics & Oxygenates								
Benzene	µg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
Toluene	µg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
Ethylbenzene	µg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
p & m-xylene	µg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
o-xylene	µg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	-	< 0.001	-	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	-	< 0.001	-	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	-	< 0.001	-	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	-	< 2.0	-	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	-	< 8.0	-	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	-	< 8.0	-	< 8.0
TPH-CWG - Aliphatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	-	< 8.4	-	< 8.4
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	-	< 10	-	< 10
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	-	< 0.001	-	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	-	< 0.001	-	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	-	< 0.001	-	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	-	< 2.0	-	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	-	< 10	-	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	-	< 10	-	< 10
TPH-CWG - Aromatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	-	< 8.4	-	< 8.4
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	-	< 10	-	< 10

Project / Site name: Connon Bridge

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1504673	TP01	None Supplied	0.10	Light brown loam and clay with gravel and vegetation.
1504674	TP02	None Supplied	1.00	Light brown clay.
1504675	TP03	None Supplied	0.10	Brown clay.
1504676	TP03	None Supplied	0.70	Brown clay.
1504677	TP03	None Supplied	1.00	Brown clay.
1504678	TP04	None Supplied	0.10	Brown clay and sand with gravel.
1504679	TP04	None Supplied	1.00	Brown clay.
1504680	TP05	None Supplied	0.70	Brown clay.
1504681	TP05	None Supplied	1.20	Brown clay.
1504682	TP06	None Supplied	0.10	Brown loam and clay with gravel and vegetation.

Project / Site name: Connon Bridge

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC- MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	w	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Organic matter (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP- OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Total Sulphate in soil as %	Determination of total sulphate in soil by extraction with 10% HCI followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Total Sulphur in soil as %	Determination of total sulphur in soil by extraction with aqua-regia, potassium bromide/bromate followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
TPH in (Soil)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	D	NONE
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	W	MCERTS
					1

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Tim Thornburn Clarkebond 129 Cumberland Road Bristol BS1 6UY

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

e: timthornburn@clarkebond.com

Analytical Report Number : 20-98853

Project / Site name:	Connon Bridge	Samples received on:	05/05/2020
Your job number:	E05284	Samples instructed on:	07/05/2020
Your order number:	P09382	Analysis completed by:	15/05/2020
Report Issue Number:	1	Report issued on:	15/05/2020
Samples Analysed:	10:1 WAC sample		

Signed: Karoline Harel

Karolina Marek PL Head of Reporting Team

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils	 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Iss No 20-98853-1 Connon Bridge E05284

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis.

i2 Analytical

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Report No:		20-	98853					
					Client:	CLARKEBOND		
		_						
Location		Conne	on Bridge		Landfill	Waste Acceptan	ce Criteria	
Lab Reference (Sample Number)		1506492	2 / 1506493		Lanumi	Limits		
Sampling Date		30/0	04/2020			Stable Non-		
Sample ID		-	ТР03		Inert Waste	reactive HAZARDOUS	Hazardous	
Depth (m)		0.70			Landfill	waste in non- hazardous Landfill	Waste Land	
Solid Waste Analysis								
OC (%)**	0.3				3%	5%	6%	
oss on Ignition (%) **	1.1						10%	
3TEX (μg/kg) **	< 10				6000			
Sum of PCBs (mg/kg) **	< 0.007				1			
/ineral Oil (mg/kg)	< 10				500			
otal PAH (WAC-17) (mg/kg)	1.2				100			
H (units)**	7.8					>6		
cid Neutralisation Capacity (mol / kg)	0.33					To be evaluated	To be evaluated	
luate Analysis	10:1			10:1	Limit value	es for compliance le	eaching test	
BS EN 12457 - 2 preparation utilising end over end leaching rocedure)	mg/l			mg/kg	using BS EN	12457-2 at L/S 10) l/kg (mg/kg)	
Arsenic *	0.0011			< 0.0110	0.5	2	25	
arium *	0.0011			0.0370	20	100	300	
Cadmium *	< 0.0001			< 0.0008	0.04	100	5	
Chromium *	0.0012			0.011	0.5	10	70	
Copper *	0.0052			0.046	2	50	100	
fercury *	< 0.0005			< 0.0050	0.01	0.2	2	
folgbdenum *	< 0.0004			< 0.0040	0.5	10	30	
lickel *	0.0008			0.0066	0.4	10	40	
ead *	< 0.0010			< 0.010	0.5	10	50	
ntimony *	< 0.0017			< 0.017	0.06	0.7	5	
elenium *	< 0.0040			< 0.040	0.00	0.5	7	
linc *	0.0093			0.081	4	50	200	
Chloride *	1.9			17	800	15000	25000	
luoride	0.17			1.5	10	150	500	
Sulphate *	4.5			40	1000	20000	50000	
DS*	26		1	220	4000	60000	100000	
Phenol Index (Monohydric Phenols) *	< 0.010			< 0.10	1	-	-	
DOC	8.07			70.9	500	800	1000	
each Test Information								
tone Content (%)	< 0.1							
ample Mass (kg)	1.0		1		1	T		
Pry Matter (%)	91		1		1	T		
loisture (%)	8.9							
	pisture content whe	un naulinelele			*= UKAS accredit	od (liquid eluste so	alvsis only)	

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3. This analysis is only applicable for landfill acceptance criteria (The Environmental Permitting (England and Wales) Regulations) and does not give any indication as to whether a waste may be hazardous or non-hazardous.

Project / Site name: Connon Bridge

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1506492	TP03	None Supplied	0.70	Brown clay.

Project / Site name: Connon Bridge

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Acid neutralisation capacity of soil	Determination of acid neutralisation capacity by addition of acid or alkali followed by electronic probe.	In-house method based on Guidance an Sampling and Testing of Wastes to Meet Landfill Waste Acceptance""	L046-PL	W	NONE
BS EN 12457-2 (10:1) Leachate Prep	10:1 (as recieved, moisture adjusted) end over end extraction with water for 24 hours. Eluate filtered prior to analysis.	In-house method based on BSEN12457-2.	L043-PL	W	NONE
BTEX in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC- MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
Chloride 10:1 WAC	Determination of Chloride colorimetrically by discrete analyser.	In house based on MEWAM Method ISBN 0117516260.	L082-PL	W	ISO 17025
Dissolved organic carbon 10:1 WAC	Determination of dissolved inorganic carbon in leachate by TOC/DOC NDIR Analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	NONE
Fluoride 10:1 WAC	Determination of fluoride in leachate by 1:1ratio with a buffer solution followed by Ion Selective Electrode.	In-house method based on Use of Total Ionic Strength Adjustment Buffer for Electrode Determination"	L033B-PL	W	ISO 17025
Loss on ignition of soil @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace.	In house method.	L047-PL	D	MCERTS
Metals in leachate by ICP-OES	Determination of metals in leachate by acidification followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil""	L039-PL	W	ISO 17025
Mineral Oil (Soil) C10 - C40	Determination of mineral oil fraction extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L076-PL	D	NONE
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Monohydric phenols 10:1 WAC	Determination of phenols in leachate by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L080-PL	W	ISO 17025
PCB's By GC-MS in soil	Determination of PCB by extraction with acetone and hexane followed by GC-MS.	In-house method based on USEPA 8082	L027-PL	D	MCERTS
pH at 20oC in soil	Determination of pH in soil by addition of water followed by electrometric measurement.	In house method.	L005-PL	W	MCERTS
Speciated WAC-17 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270. MCERTS accredited except Coronene.	L064-PL	D	NONE
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate 10:1 WAC	Determination of sulphate in leachate by ICP-OES	In-house method based on MEWAM 1986 Methods for the Determination of Metals in Soil""	L039-PL	W	ISO 17025
Total dissolved solids 10:1 WAC	Determination of total dissolved solids in water by electrometric measurement.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L004-PL	W	ISO 17025

Iss No 20-98853-1 Connon Bridge E05284

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis.

Project / Site name: Connon Bridge

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

MULTIDISCIPLINARY ENGINEERING CONSULTANTS

The Cocoa House 129 Cumberland Road Bristol BS1 6UY

tel: +44 (0)117 929 2244

GF Suite Bickleigh House Park Five Business Centre Exeter EX2 7HU

tel: +44 (0)1392 369098

www.clarkebond.com

7 Hatchers Mews Bermondsey Street London SE1 3GS

tel: +44(0)20 7939 0959